Monday 17 July 2017

Como Para Calcular A Previsão Usando A 3 E 5 Período Média Móvel


Evolução média móvel média. Como você pode imaginar, estamos olhando algumas das abordagens mais primitivas da previsão. Mas espero que este seja, pelo menos, uma introdução interessante para algumas das questões de informática relacionadas à implementação de previsões em planilhas. Nessa linha, continuaremos começando no início e começaremos a trabalhar com as previsões da Moeda em Movimento. Previsões médias móveis. Todos estão familiarizados com as previsões da média móvel, independentemente de acreditarem estar ou não. Todos os estudantes universitários fazem-no o tempo todo. Pense nos resultados do teste em um curso onde você terá quatro testes durante o semestre. Vamos assumir que você obteve um 85 no seu primeiro teste. O que você prever para o seu segundo resultado de teste O que você acha que seu professor prever para o seu próximo resultado de teste? O que você acha que seus amigos podem prever para o seu próximo resultado do teste? O que você acha que seus pais podem prever para o seu próximo resultado? Todos os blabbing que você pode fazer para seus amigos e pais, eles e seu professor provavelmente esperam que você consiga algo na área dos 85 que você acabou de receber. Bem, agora vamos assumir que, apesar de sua auto-promoção para seus amigos, você superestimar-se e imaginar que você pode estudar menos para o segundo teste e então você obtém um 73. Agora, o que todos os interessados ​​e desinteressados ​​vão Preveja que você obtém seu terceiro teste. Existem duas abordagens muito prováveis ​​para que eles desenvolvam uma estimativa, independentemente de compartilharem com você. Eles podem dizer a si mesmos, esse cara está sempre soprando fumaça sobre seus inteligentes. Hes vai ter outros 73 se tiver sorte. Talvez os pais tentem ser mais solidários e dizer, muito, até agora você obteve um 85 e um 73, então talvez você devesse entender sobre obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festa E não mexia com a doninha em todo o lugar e se você começou a fazer muito mais estudando, você poderia obter uma pontuação mais alta. Duas dessas estimativas são, na verdade, previsões médias móveis. O primeiro está usando apenas o seu resultado mais recente para prever seu desempenho futuro. Isso é chamado de previsão média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos assumir que todas essas pessoas que estão se abalando na sua ótima mente ficaram chateadas e você decide fazer bem no terceiro teste por suas próprias razões e colocar uma pontuação maior na frente do quotalliesquot. Você faz o teste e sua pontuação é realmente um 89, todos, incluindo você, está impressionado. Então, agora você começa o teste final do semestre e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você fará no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. O que você acredita é o Whistle mais preciso enquanto trabalhamos. Agora, retornamos à nossa nova empresa de limpeza, iniciada pela sua meia-irmã separada chamado Whistle While We Work. Você possui alguns dados de vendas passadas representados pela seção a seguir de uma planilha. Primeiro apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula celular para as outras células C7 até C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que não precisamos realmente fazer as previsões para os períodos passados ​​para desenvolver nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Eu incluí o quotpast predictionsquot porque vamos usá-los na próxima página da web para medir a validade da previsão. Agora, eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula celular para as outras células C6 até C11. Observe como agora apenas as duas peças históricas mais recentes são usadas para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são importantes para aviso prévio. Para uma previsão média móvel de m-período, apenas os valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpast, observe que a primeira previsão ocorre no período m 1. Essas duas questões serão muito significativas quando desenvolvamos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão média móvel que pode ser usada de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que deseja usar na previsão e na matriz de valores históricos. Você pode armazená-lo em qualquer livro de trabalho que desejar. Função MovingAverage (Histórico, NumberOfPeriods) As Single Declarando e inicializando variáveis ​​Dim Item As Variant Dim Counter As Integer Dim Accumulation As Single Dim HistoricalSize As Integer Inicializando variáveis ​​Counter 1 Accumulation 0 Determinando o tamanho da matriz histórica HistoricalSize Historical. Count Para o contador 1 para NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha para que o resultado do cálculo apareça onde deveria gostar do seguinte. Exemplos de cálculo da previsão A.1 Métodos de cálculo da previsão Doze métodos de cálculo das previsões estão disponíveis. A maioria desses métodos prevê um controle limitado de usuários. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas dos dados históricos usados ​​nos cálculos pode ser especificado. Os exemplos a seguir mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir usam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo da previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de espera de três meses (opção de processamento 19 3), que é usado em porcentagem de precisão e cálculos de desvio absoluto médio (vendas reais em comparação com previsão simulada). A.2 Critérios de avaliação do desempenho da previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão serão melhores do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Também é improvável que um método de previsão que forneça bons resultados em um estágio do ciclo de vida de um produto permaneça adequado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Mean Absolute Deviation (MAD) e Percentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período de tempo especificado pelo usuário. Esse período de tempo é chamado de período de espera ou períodos de melhor ajuste (PBF). Os dados neste período são usados ​​como base para recomendar qual dos métodos de previsão a serem utilizados na realização da próxima projeção de previsão. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas seguindo os exemplos dos doze métodos de previsão. A.3 Método 1 - Porcentagem especificada no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1.10 para um aumento de 10, ou 0,97 para uma diminuição de 3. Histórico de vendas obrigatório: um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa de histórico de vendas para usar no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma os três meses finais de 2005: 114 119 137 370 Soma os mesmos três meses do ano anterior: 123 139 133 395 O fator calculado 370395 0.9367 Calcule as previsões: vendas de janeiro de 2005 128 0.9367 119.8036 ou cerca de 120 de fevereiro de 2005 vendas 117 0,9367 109,5939 ou cerca de 110 de março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Sume os três meses de 2005 antes do período de retenção (julho, agosto, setembro): 129 140 131 400 Soma os mesmos três meses para o Ano anterior: 141 128 118 387 O fator calculado 400387 1.033591731 Calcular previsão simulada: outubro de 2004 vendas 123 1.033591731 127.13178 novembro de 2004 vendas 139 1.033591731 143.66925 dezembro de 2004 vendas 133 1.033591731 137.4677 A.4.3 Porcentagem de cálculo de precisão POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Cálculo do desvio absoluto médio MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Método 3 - Ano passado para este ano Este método copia dados de vendas do ano anterior para o próximo ano. Histórico de vendas obrigatório: um ano para calcular a previsão mais o número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo da Previsão Número de períodos a serem incluídos na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, a média dos dados dos três meses anteriores. Previsão de janeiro: 114 119 137 370, 370 3 123.333 ou previsão de 123 de fevereiro: 119 137 123 379, 379 3 126.333 ou 126 Previsão de março: 137 123 126 379, 386 3 128.667 ou 129 A.6.2 Cálculo de Previsão Simulado vendas de outubro de 2005 (129 140 131) 3 133.3333 Vendas de novembro de 2005 (140 131 114) 3 128.3333 Vendas de dezembro de 2005 (131 114 119) 3 121.3333 A.6.3 Porcentagem de cálculo de precisão POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Absoluto médio Cálculo do desvio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Método 5 - Aproximação linear Aproximação linear calcula uma tendência com base em dois pontos de dados de histórico de vendas. Esses dois pontos definem uma linha de tendência direta que é projetada para o futuro. Use este método com cautela, pois as previsões de longo alcance são alavancadas por pequenas mudanças em apenas dois pontos de dados. Histórico de vendas obrigatório: o número de períodos a serem incluídos na regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo da Previsão Número de períodos a serem incluídos na regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção no período anterior. Média dos três meses anteriores (114 119 137) 3 123.3333 Resumo dos três meses anteriores com peso considerado (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Razão ( 12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 232 11,5 Valor2 Média - valor1 proporção 123.3333 - 11,5 2 100.3333 Previsão (1 n) valor1 valor2 4 11,5 100.3333 146.333 ou 146 Previsão 5 11.5 100.3333 157.8333 ou 158 Previsão 6 11.5 100.3333 169.3333 Ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de outubro de 2004: Média dos três meses anteriores (129 140 131) 3 133.3333 Resumo dos três meses anteriores com peso considerado (129 1) (140 2) (131 3) 802 Diferença entre o Valores 802 - 133.3333 (1 2 3) 2 Razão (12 22 32) - 2 3 14 - 12 2 Valor1 Diferença Rácio 22 1 Valor2 Rácio médio - valor1 133.3333 - 1 2 131.3333 Previsão (1 n) valor1 valor2 4 1 131.3333 135.3333 Novembro 2004 vendas Média dos três meses anteriores (140 131 114) 3 128.3333 Resumo dos três meses anteriores com peso considerado (140 1) (131 2) (114 3) 744 Diferença entre os valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 DiferençaRatio -25.99992 -12.9999 Valor2 Rácio médio - valor1 128.3333 - (-12.9999) 2 154.3333 Previsão 4 -12.9999 154.3333 102.3333 Vendas de dezembro de 2004 Média dos três meses anteriores (131 114 119) 3 121.3333 Resumo dos três meses anteriores com peso considerado ( 131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 DiferençaRatio -11.99992 -5.9999 Valor2 Taxa média - valor1 121.3333 - (-5.9999) 2 133.3333 Previsão 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Porcentagem do Cálculo de Precisão POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Cálculo médio do desvio absoluto MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Método 7 - Secon D Grau Aproximação A regressão linear determina valores para a e b na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. A Aproximação do Segundo Grau é semelhante. No entanto, esse método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre os estágios de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estágios de crescimento, a tendência de vendas pode acelerar. Por causa do segundo termo da ordem, a previsão pode rapidamente se aproximar do infinito ou diminuir para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, esse método é útil apenas no curto prazo. Especificações de previsão: as fórmulas encontram a, b e c para ajustar uma curva a exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. De julho a setembro são adicionados para criar Q2, e outubro a dezembro somam para o terceiro trimestre. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas obrigatório: 3 n períodos para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). Número de períodos para incluir (opção de processamento 7a) 3 neste exemplo Use os blocos anteriores (3 n) meses em três meses: Q1 (Abr-Jun) 125 122 137 384 Q2 (Jul-Sep) 129 140 131 400 Q3 ( Out - Dec) 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X 1) abc (2) Q2 Um bX cX2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, a e c: Subtrair a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação por b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua estas equações por a e b em Equação (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 O método de Aproximação do Segundo Grau calcula a, b e c da seguinte maneira: a Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Janela até a previsão de março (X4): (322 340 - 368) 3 2943 98 Por período de previsão de abril a junho (X5): (322 425-575) 3 57,3333 ou 57 por período de previsão de julho a setembro (X6): (322 510 - 828) 3 1,33 ou 1 por período de outubro a dezembro (X7) (322 595 - 11273 -70 A.9.2 Cálculo de Previsão Simulado Outubro, Novembro e Dezembro de 2004 vendas: Q1 (Jan-Mar) 360 Q2 (Abr-Jun) 384 Q3 (Jul-Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Porcentagem do Cálculo de Precisão POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Cálculo do desvio absoluto médio MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Método 8 - Método flexível O método flexível (Percentagem sobre n meses prévios) é semelhante ao método 1, Percentagem acima do último ano. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário, então, projete esse resultado no futuro. No método Percent Over Over Year, a projeção é baseada em dados do mesmo período do ano anterior. O Método Flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados anteriores do histórico de vendas em 15. Período base. Por exemplo, n 3 fará com que a primeira previsão baseie-se em dados de vendas em outubro de 2005. Histórico de vendas mínimo: o usuário especificou o número de períodos de volta ao período base, além do número de períodos de tempo necessários para avaliar o desempenho previsto ( PBF). A.10.4 Cálculo médio do desvio absoluto MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Método 9 - Média móvel ponderada O método da média móvel ponderada (WMA) é semelhante ao Método 4, Média móvel (MA). No entanto, com a média móvel ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico recente de vendas para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, portanto, isso torna a WMA mais sensível às mudanças no nível de vendas. No entanto, a previsão de viés e erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados ​​no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rápido a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar para 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média de Movimento Ponderada (WMA). No entanto, em vez de atribuir arbitrariamente pesos aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam para 1,00. O método então calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como é verdade para todas as técnicas de previsão média móvel média, tendência de previsão e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados ​​no cálculo da previsão. Isso é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que recuam linearmente e somam para 1,00. Por exemplo, quando n 3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo de Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 10a) 3 neste exemplo Relação para um período anterior 3 (n2 n) 2 3 (32 3) 2 36 0.5 Relação para dois períodos anteriores 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Relação para três períodos anteriores 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Previsão de janeiro: 137 0.5 119 13 114 16 127.16 ou 127 Previsão de fevereiro: 127 0.5 137 13 119 16 129 Previsão de março: 129 0,5 127 13 137 16 129,666 ou 130 A.12.2 Cálculo de Previsão Simulado outubro de 2004 vendas 129 16 140 26 131 36 133.6666 novembro 2004 vendas 140 16 131 26 114 36 124 dezembro 2004 vendas 131 16 114 26 119 36 119.3333 A.12.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Cálculo do Desvio Absorvente Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Método 11 - Suavização exponencial Este método é semelhante ao Método 10, Suavização linear. No Suavização linear, o sistema atribui pesos aos dados históricos que recuam linearmente. Em suavização exponencial, o sistema atribui pesos que se deterioram exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1 - a) Previsão anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais para o período anterior. (1 - a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1 - a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribuir valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos de histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas para incluir nos cálculos. Geralmente, um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. O suavização exponencial pode gerar uma previsão baseada em um ponto de dados histórico tão pouco quanto possível. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 11a) 3 e fator alfa (opção de processamento 11b) em branco neste exemplo, um fator para os dados de vendas mais antigos 2 (11) ou 1 quando especificado em alfa Um fator para os 2 maiores dados de vendas 2 (12), ou alfa quando o alfa é especificado como um fator para os 3 maiores dados de vendas 2 (13), ou alfa quando o alfa é especificado como um fator para os dados de vendas mais recentes 2 (1n) , Ou alfa quando o alfa é especificado em novembro Sm. Avg. A (outubro atual) (1 - a) outubro Sm. Avg. 1 114 0 0 114 Dezembro Sm. Avg. A (Novembro Actual) (1 - a) Novembro Sm. Avg. 23 119 13 114 117.3333 Previsão de janeiro a (dezembro atual) (1 - a) dezembro Sm. Avg. 24 137 24 117.3333 127.16665 ou 127 Fevereiro Previsão Previsão de janeiro 127 Março Previsão Previsão de janeiro 127 A.13.2 Cálculo de previsão simulada Julho, 2004 Sm. Avg. 22 129 129 agosto Sm. Avg. 23 140 13 129 136.3333 setembro Sm. Avg. 24 131 24 136.3333 133.6666 outubro, 2004 vendas Sep Sm. Avg. 133.6666 Agosto, 2004 Sm. Avg. 22 140 140 setembro Sm. Avg. 23 131 13 140 134 outubro Sm. Avg. 24 114 24 134 124 novembro, 2004 vendas Sep Sm. Avg. 124 setembro 2004 Sm. Avg. 22 131 131 outubro Sm. Avg. 23 114 13 131 119.6666 novembro Sm. Avg. 24 119 24 119.6666 119.3333 dezembro 2004 vendas Sep Sm. Avg. 119.3333 A.13.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absorvente Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Método 12 - Suavização Exponencial Com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que uma média suavizada é calculada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média lisa ajustada para uma tendência linear. Quando especificado na opção de processamento, a previsão também é ajustada para a sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para o intervalo alfa de 0 a 1. b a constante de suavização utilizada no cálculo da média suavizada para o componente de tendência da previsão. Valores válidos para o intervalo beta de 0 a 1. Se um índice sazonal é aplicado à previsão a e b são independentes um do outro. Eles não precisam adicionar a 1.0. Histórico de vendas mínimo exigido: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações de alisamento exponencial e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo da previsão A) Uma média MAD suavemente exponencial (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Avaliando as previsões Você pode selecionar os métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, não é prático tomar uma decisão subjetiva sobre qual das previsões usar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho para cada um dos métodos de previsão que você seleciona e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, desvio médio absoluto (MAD) e porcentagem de precisão (POA). MAD é uma medida de erro de previsão. O POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho exigem dados reais do histórico de vendas para um período de tempo especificado pelo usuário. Este período de história recente é chamado de período de espera ou períodos de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período histórico de retenção. Normalmente, haverá diferenças entre os dados reais de vendas e a previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de espera e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. O método de previsão que produz a melhor combinação (melhor ajuste) entre a previsão e as vendas reais durante o período de suspensão é recomendado para uso em seus planos. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. A.16 Desvio absoluto médio (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre dados reais e previsão. MAD é uma medida da magnitude média dos erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados ​​no cálculo, erros positivos não cancelam erros negativos. Ao comparar vários métodos de previsão, aquele com menor MAD mostrou ser o mais confiável para esse produto para esse período de espera. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e outras duas medidas comuns de distribuição, desvio padrão e Erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida de previsão de viés. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos dos estoques aumentam. Quando as previsões são consistentemente duas baixas, os estoques são consumidos e o serviço ao cliente diminui. Uma previsão que é 10 unidades muito baixa, então 8 unidades muito altas, então 2 unidades muito altas, seria uma previsão imparcial. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro Actual - Previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usada para amortecer os erros. Nessa situação, não é tão importante eliminar erros de previsão, pois é gerar previsões imparciais. No entanto, nas indústrias de serviços, a situação acima seria vista como três erros. O serviço ficaria insuficiente no primeiro período, e depois o excesso de pessoal para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão geralmente é mais importante do que o previsão de viés. O somatório durante o período de suspensão permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. É claro que é impossível ter mais de 100 precisões. Quando uma previsão é imparcial, a proporção de POA será de 100. Portanto, é mais desejável ter 95 precisos do que ser 110 precisos. O critério POA seleciona o método de previsão que tem uma razão POA mais próxima de 100. O script nesta página melhora a navegação do conteúdo, mas não altera o conteúdo de forma alguma. Movendo os modelos de suavização média e exponencial Como um primeiro passo para mover além dos modelos médios, Modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no data (the random fluctuations) as well as the quotsignalquot (the local mean). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. The confidence limits computed by Statgraphics for the long-term forecasts of the simple moving average do not get wider as the forecasting horizon increases. This is obviously not correct Unfortunately, there is no underlying statistical theory that tells us how the confidence intervals ought to widen for this model. However, it is not too hard to calculate empirical estimates of the confidence limits for the longer-horizon forecasts. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. If we try a 9-term simple moving average, we get even smoother forecasts and more of a lagging effect: The average age is now 5 periods ((91)2). If we take a 19-term moving average, the average age increases to 10: Notice that, indeed, the forecasts are now lagging behind turning points by about 10 periods. Which amount of smoothing is best for this series Here is a table that compares their error statistics, also including a 3-term average: Model C, the 5-term moving average, yields the lowest value of RMSE by a small margin over the 3-term and 9-term averages, and their other stats are nearly identical. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitively, past data should be discounted in a more gradual fashion--for example, the most recent observation should get a little more weight than 2nd most recent, and the 2nd most recent should get a little more weight than the 3rd most recent, and so on. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). One way to write the model is to define a series L that represents the current level (i. e. local mean value) of the series as estimated from data up to the present. The value of L at time t is computed recursively from its own previous value like this: Thus, the current smoothed value is an interpolation between the previous smoothed value and the current observation, where 945 controls the closeness of the interpolated value to the most recent observation. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. In the first version, the forecast is an interpolation between previous forecast and previous observation: In the second version, the next forecast is obtained by adjusting the previous forecast in the direction of the previous error by a fractional amount 945. is the error made at time t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note that if 945 1, the SES model is equivalent to a random walk model (without growth). If 945 0, the SES model is equivalent to the mean model, assuming that the first smoothed value is set equal to the mean. (Return to top of page.) The average age of the data in the simple-exponential-smoothing forecast is 1 945 relative to the period for which the forecast is computed. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. For a given average age (i. e. amount of lag), the simple exponential smoothing (SES) forecast is somewhat superior to the simple moving average (SMA) forecast because it places relatively more weight on the most recent observation --i. e. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. An SES model is actually a special case of an ARIMA model. so the statistical theory of ARIMA models provides a sound basis for calculating confidence intervals for the SES model. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. The forecasting formula is based on an extrapolation of a line through the two centers. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Agora, isso parece previsões razoáveis ​​para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)

No comments:

Post a Comment